
QualState: Finding Website States for Accessibility Evaluation
Filipe Rosa Martins

frmartins@lasige.di.fc.ul.pt
LASIGE, Faculdade de Ciências,

Universidade de Lisboa
Lisboa, Portugal

Letícia Seixas Pereira
lspereira@ciencias.ulisboa.pt
LASIGE, Faculdade de Ciências,

Universidade de Lisboa
Lisboa, Portugal

Carlos Duarte
caduarte@edu.ulisboa.pt

LASIGE, Faculdade de Ciências,
Universidade de Lisboa

Lisboa, Portugal

ABSTRACT
Single Page Applications (SPAs) are characterised by changing a
webpage’s content without forcing a reload. While they increase the
interactivity of web pages, they can also raise accessibility concerns,
such as new content being displayed without screen reader users
being aware. Another concern raised impacts the ability of current
web accessibility evaluation tools to be able to assess SPAs. Current
tools work by loading the DOM and assessing it. For SPAs, which
change the DOM in response to user interaction, it is possible
that evaluation tools do not have access to a significant part of a
page’s content. In this paper, we introduce QualState, a tool that
can browse the different states of a SPA, and provide the DOM of
the different states to QualWeb, an automated web accessibility
evaluation tool, so their accessibility can be evaluated. We assessed
QualState in a small set of SPAs and concluded that it increases the
number of elements evaluated and improves QualWeb’s ability to
identify accessibility barriers.

CCS CONCEPTS
• Human-centered computing → Accessibility; Accessibility
systems and tools.

KEYWORDS
Web Accessibility, SPA, Single Page Application, Crawler, Auto-
mated accessibility evaluation, QualWeb, QualState
ACM Reference Format:
Filipe Rosa Martins, Letícia Seixas Pereira, and Carlos Duarte. 2024. Qual-
State: Finding Website States for Accessibility Evaluation. In The 21st In-
ternational Web for All Conference (W4A ’24), May 13–14, 2024, Singapore,
Singapore. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3677846.3677851

1 INTRODUCTION
Internet usage has grown at an unprecedented rate and shows no
signs of slowing down. BroadbandSearch reports that between the
years 2000 and 2022, Internet use increased by around 1355% [5].
This was accompanied by the need to change the paradigm of how
web applications and websites are developed and used to accommo-
datemore users, be faster and offermore functionalities [24]. During
this advance emerged the concept of Single Page Application (SPA),

This work is licensed under a Creative Commons Attribution International
4.0 License.

W4A ’24, May 13–14, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1030-8/24/05
https://doi.org/10.1145/3677846.3677851

e.g. Facebook, Google Maps, and Gmail. SPAs are dynamic pages
that change their content in response to users’ actions, without the
need to reload a new page.

SPAs, like any other website, should be accessible, irrespective
of their users’ capabilities. SPAs, however, present some challenges
that are not common in most other web pages. For example, new
content being displayed on the page needs to be announced to
screen reader users who are not capable of perceiving the visual
change in the page. These challenges also extend to the domain of
automated web accessibility evaluation. The vast majority of acces-
sibility evaluation tools were developed considering static pages,
obtaining the HTML (Hypertext Markup Language) and other con-
tent elements, such as images and JavaScript scripts [16], and then
carrying out the accessibility evaluation. However, these tools are
not prepared to handle the dynamic nature of SPAs, which change
their content as a consequence of user actions. This dynamism
is not triggered by the evaluation tool, meaning the tool will not
access the content that can be presented to a user. Therefore, it
becomes very difficult, if not impossible, to carry out a reliable
accessibility assessment of SPAs with existing tools.

In response to this challenge, we introduce QualState, a solution
designed to address the complexities of accessibility evaluation
in SPAs. QualState uses a page state crawler designed to explore
multiple states within a single web page. The crawler identifies
elements that can be activated and triggers them. If no page reloads
results from the activation, QualState compares the new state with
the states that had already been visited to decide if it has not been
seen before. QualState makes available another set of instructions
to support a more efficient exploration of SPAs, such as the possi-
bility of instructing the crawler to fill out form elements and give
instructions about page elements that should not be activated. With
this set of features, QualState enables a comprehensive exploration
of dynamic web environments.

To support the accessibility evaluation of these environments,
QualState was integrated with QualWeb [10], an automated web
accessibility evaluation tool. An initial evaluation of the QualState-
augmented QualWeb was conducted to provide an assessment of
the benefits introduced by integrating QualState with QualWeb,
highlighting its advantages over the core QualWeb system alone.

This work presents the following contributions:

• QualState, a crawler that can explore states in SPAs;
• QualWeb augmented by QualState demonstrating the feasi-
bility of increased accessibility assessment of dynamic web
environments;

• An initial evaluation of the benefits of increased page state
assessments.

96

https://orcid.org/0009-0008-6400-3848
https://orcid.org/0000-0003-0178-5543
https://orcid.org/0000-0003-1370-5379
https://doi.org/10.1145/3677846.3677851
https://doi.org/10.1145/3677846.3677851
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3677846.3677851
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677846.3677851&domain=pdf&date_stamp=2024-10-22

W4A ’24, May 13–14, 2024, Singapore, Singapore Filipe Rosa Martins, Letícia Seixas Pereira, and Carlos Duarte

The remainder of the paper starts by reviewing related work.
This is followed by a description of QualState, detailing its archi-
tecture, different components and integration with QualWeb. The
following section presents the results of the initial performance
evaluation, highlighting the possibility of reaching more content
to be assessed. The final section concludes this work and discusses
future challenges.

2 RELATEDWORK
Our work is related to three domains: web accessibility, particularly
web accessibility evaluation; Single Page Applications, emphasising
the difficulties they create for accessibility evaluation; and web
crawling and page state comparison.

2.1 Web Accessibility
With the growing use of the Internet and of its presence in our daily
lives accessibility is beginning to be called into question because
of the way it can exclude certain groups [6]. This became evident
during the COVID-19 pandemic, when the quarantine meant that
access to services became almost exclusively online, highlighting
the many accessibility problems raised by the vast majority of
websites. For example, Lazar [15] reports on how this problem has
affected numerous colleges in the United States, identifying issues
related to procurement and training, but also to the accessibility of
digital resources.

Abuaddous et al. [2] had already categorized accessibility chal-
lenges into three main groups: (i) standards and guidelines, (ii)
design and development, and (iii) accessibility evaluation. Regard-
ing standards and guidelines, WCAG (Web Content Accessibility
Guidelines) [29] is one of the most widely used sets of guidelines,
serving as a reference when one wants to make a website more
accessible. To illustrate their relevance, standards are being created
around the world, such as the EN 301 549 [9] in Europe, and Section
508 [12] in the USA. However, WCAG is not without issues [6].
Ambiguity remains a concern, leading to subjective interpretations
and poorly implemented solutions – it is noteworthy to mention
that Accessibility Conformance Testing Rules (ACT-R) [30] have
emerged to provide specific and objective criteria for accessibility
testing. Additionally, relying solely onWCAG is deemed insufficient
to ensure comprehensive accessibility.

In the context of design and development, a shortage of experts
and trained personnel also hampers the implementation and assess-
ment of accessibility, primarily due to a lack of awareness towards
accessibility issues within the industry [2].

Building on the discussion of accessibility challenges, the follow-
ing section further explores the accessibility evaluation process, a
critical aspect of this study.

2.2 Web Accessibility Evaluation
Accessibility evaluation is a demanding job that consumes time and
resources and requires the participation of experts or users to carry
out the evaluation [2]. As such, tools that carry out evaluations of
websites automatically have naturally emerged.

These tools can be used online or locally, and typically check
conformance with a set of accessibility standards [1], and signifi-
cantly reduce the time and effort required for assessments. They

remain highly beneficial for conducting initial accessibility evalua-
tions, enabling rapid identification and filtering of a large number
of accessibility issues.

Furthermore, these tools are also useful for conducting extensive
evaluations of numerous websites collectively, a task particularly
crucial, for instance, for monitoring accessibility status across vari-
ous web platforms. They aid in understanding genuine accessibil-
ity levels and identifying areas requiring improvement interven-
tions [14]. In this context, Santoro et al. [14] scrutinized 2.7 million
web pages from Italian public administrations to assess adherence to
WCAG 2.1 standards. Recent studies have also employed these tools
for diverse purposes. Through an evaluation of around three million
web pages, Martins and Duarte [20] investigated the correlation
between web accessibility metrics, analyzing eleven metrics derived
from automated evaluations across approximately three million
web pages. In a further study with the same dataset, Martins and
Duarte [19] characterized web accessibility and established connec-
tions between web technologies and accessibility levels, showing
the feasibility of selecting technologies that enhance or, at least, do
not compromise web content accessibility.

While these tools offer significant benefits, they also have limi-
tations. A primary concern is that not all guidelines can be reliably
assessed computationally [1, 2]. Additionally, there is inconsistency
in how certain guidelines are interpreted by different programmers,
leading to varying outcomes from different evaluation tools assess-
ing the same page [2]. Furthermore, another limitation arises in
dynamic contexts, as these tools may struggle to adequately assess
pages with interactive elements or content that changes dynami-
cally [3]. Given the focus of this work, which aims to address this
gap, a more detailed discussion on this limitation will be provided
later on. It is also important to highlight that, considering these lim-
itations, a comprehensive accessibility evaluation requires manual
assessment by experts, ideally involving users with disabilities [1].

Currently, various tools test the accessibility of a page, such as
AChecker [7], WAVE [31], aXe [8], or QualWeb [10]. To illustrate
the functioning of such tools, and considering we have integrated
QualWeb and QualState, we will provide an overview of QualWeb’s
functioning.

To use QualWeb, the user has to provide a valid URL, choose
which assessment modules to use and what output format is de-
sired. Initially, the URL is processed in the DOM module, which is
responsible for transforming the DOM obtained from the URL into
objects that can be manipulated by QualWeb. This DOM is loaded
in a Puppeteer [13] instance where the user-selected evaluation
modules are injected. The evaluation modules are then executed,
with the outcomes of each test being added to an object that con-
tains the overall evaluation results. Finally, the final report is sent
to a formatter to be converted into the desired format. Two formats
are currently supported by QualWeb: its native JSON-based format
and EARL, the Evaluation and Report Language [27] format.

2.3 Single Page Applications
In recent years, Single Page Applications (SPAs) have redefined
web interaction by enabling dynamic content updates without full
page reloads [22, 24]. SPAs operation starts with a server request,

97

QualState: Finding Website States for Accessibility Evaluation W4A ’24, May 13–14, 2024, Singapore, Singapore

Figure 1: Resource processing in a web browser.

followed by DOMprocessing and rendering. New content is then ob-
tained either through pre-loaded scripts or AJAX requests, enhanc-
ing interactivity [11, 21]. This communication process comprises
three steps (see Figure 1):

(1) Request web page: Initiates the primary resource request
for content structure.

(2) Request resources: Fetches additional resources to aid page
construction, such as images.

(3) AJAX request: Makes any number of HTTP requests for
resources that are needed.

It is the final step that distinguishes a SPA from a traditional web
page, allowing efficient resource retrieval for enhanced interactivity.

According to this processing model, the same page can take on
various forms, with different elements and configurations. We will
define a page state as a version of the page captured at one given
instant. Page states can be represented in different ways. Some
approaches use the DOM to define the state of a page [28], while
other approaches use a combination of URL, links, forms, and a list
of existing events [16].

Automatic accessibility evaluation tools were primarily designed
to assess static pages. However, it is important to note another
limitation of these tools: their functionality and effectiveness are
limited in a dynamic context. Specifically, they can only analyze the
original state of a page and are unable to recognize or understand
when a state is updated due to user interaction [3]. In addition to
this shortcoming, these tools are also unable to invoke different
events in the SPA and capture new states to evaluate them. As such,
it is not possible to obtain a reliable assessment of the accessibility
of a SPA using traditional accessibility evaluation tools.

To be able to evaluate a SPA in its entirety, it is necessary to
adapt the tools that currently exist. For that, mechanisms that can
crawl the different states of a page are needed.

2.4 Crawlers
Web crawlers were initially built to explore all the links that a
web application or website presents. The process starts with a URL
which is then explored to find other links. All the links found are
then placed in a list that will also be explored with the process
continuing until all the entries in the list have been explored or a
certain user-selected number of URLs have been found [17].

As a consequence of evolving web technology and the changes it
promoted for websites and web applications, the concept of crawler
has undergone some changes. It is now necessary to do a more
comprehensive exploration to obtain more details about the page.
Currently, a crawler works by obtaining HTML code, DOM, CSS,
images, and Javascript scripts [16]. These elements are then pro-
cessed to isolate elements, mostly HTML tags, that would allow the
exploration to be extended. The elements found are then placed in a
list for further exploration. Crawlers have appeared in the literature
with two distinct approaches, automatic and semi-automatic, both
of which have advantages and disadvantages.

2.4.1 Automatic crawlers. We consider automatic crawlers as com-
pletely autonomous tools, that do not require user interaction, thus
presenting themselves as an option in which no technical knowl-
edge or knowledge of the application to be explored is required.

Crawljax [28] presents itself as “state-of-the-art” [26] and as
one of the first SPA crawler tools. Crawljax is an open-source au-
tomatic tool which, given a URL, explores a web application by
entering random values in input fields and invoking all the ele-
ments it identifies as clickable [16]. At the same time, it builds a
graph with all the states it has found [16], with the nodes being
the states and the edges being how the state was reached. Crawl-
jax’s biggest limitation is the small number of events it can invoke,
over an equally small number of HTML tags. Crawljax considers
only the <a>, <div>, <input> and tags and the click and
mouseOver events [23], thus restricting the number of states that
can be explored, given other HTML tags and events can generate
states. Crawljax does, however, provide a set of plugins that can ex-
tend its usefulness to various applications, including the possibility
of expanding the list of tags and events that can be used [18].

Demodocus [4] presents a similar approach to Crawljax. Given
a URL, all possible interactions are invoked to try and reach the
maximum number of states. The graph also has a similar structure
to what Crawljax builds, with the nodes being the different states
reached and the edges being how they are reached, i.e., the inter-
action a user performs in the web application. Demodocus has the
particularity of having a longer list of tags and events compared to
Crawljax. The biggest limitation of this tool is the impossibility of
entering values in input fields and thus explore the new states these
might trigger. This problem limits this approach because, in many
instances, a large portion of the web application only appears after
interactions that require inputs. For example, an authentication
page where username and password are required.

Finally, Autocrawler [17] is a crawler that builds on the concepts
presented by Crawljax by adding mechanisms that can detect if
there are pop-upwindows and invoking CSS pseudo-classes. To deal
with pop-up windows, Autocrawler creates a state for the pop-up
window element. This state is then treated like any other in which
all possible events are identified and invoked, thus exploring as

98

W4A ’24, May 13–14, 2024, Singapore, Singapore Filipe Rosa Martins, Letícia Seixas Pereira, and Carlos Duarte

many states as possible, until the event that closes the pop-up win-
dow is invoked and the remaining states are explored. The problem
of invoking pseudo-class actions is solved by placing a proxy server
between the browser and the web application. This proxy analyzes
the code received from the web application to detect if there is any
invocation of the :hover function. If there is, a hook function is
placed that replaces the invocation of the :hover function with an
onClick event, which can be invoked using JavaScript.

2.4.2 Semi-automatic crawlers. Semi-automatic crawlers require
user intervention. This intervention may come in different ways,
from interacting with the crawler to providing initial input.

AWET (AutomatedWeb application testing based on Exploratory
Testing) [26] is a tool that helps develop tests for web applications
automatically. AWET uses a crawler with directions to explore as
many states of a web application as possible and create more tests
automatically. This tool initially needs a predefined set of tests
as input. It is with these tests that the direction of the crawler is
ultimately determined. The tests provided are then analyzed to
remove inputs, interactions and their order of execution to create
rules and strategies to apply to the crawler, thus exploring more
states, and avoiding a disorganized and random process.

GUIDE [18] is another semi-automatic approach that relies heav-
ily on user input. GUIDE is an interactive crawler that actively
asks the user which input values to use in different scenarios, thus
allowing users to interact without needing knowledge of the web
application’s underlying code. During the crawling process, if the
crawler reaches a state where there is a way to proceed but user
intervention is required, it will ask the user how to proceed by dis-
playing screenshots in which the input fields are highlighted. The
user can then define one or more values that the crawler should use.
Using different values allows a user to create different directives,
i.e., different options that the crawler will have to go through. This
process is then repeated until there are no more states or until the
user completes the process.

2.5 State comparison and evaluation
A crucial aspect of a crawler is the ability to compare states to
ensure that the current state differs from all visited states.

Autocrawler [17] uses a simple solution for comparing states.
Given a string with a state’s HTML, it is compared with the HTML
of the other states found, using the concept of “Edit Distance” [25].

Demodocus [4] compares states using the “Three-Stage Com-
parator Pipeline”. The first step is to transform the HTML into a
string and compare it with all the states already identified. If the
string differs, then a new state was found. The second step is to
compare the DOM of each state. The comparison focuses on the
structure of the DOM to check whether nodes have been added
or removed. If the comparison shows differences, the state is new.
The last step uses the “Levenshtein technique”, which compares
the distance between nodes with text between the different states.

As mentioned before, the combination of a crawler to obtain
states and the evaluation of their accessibility is a relatively new
concept. As such, there are not many tools that do both without
requiring changes or the use of auxiliary tools.

Demodocus [4], in addition to crawling a web application to
obtain the various states, also performs an accessibility assessment.

The accessibility assessment uses user models, i.e., user representa-
tions that simulate one or more disabilities, or standard accessibility
requirements. Initially, when building the state graph, an omniuser
is used, which can invoke all kinds of interactions and thus dis-
cover as many states as possible; once this process is complete, an
omnigraph is created. Next, various subgraphs are constructed with
the help of user models. A subgraph makes it possible to check if
there are states that a user with disabilities cannot reach and thus
confirm whether or not there are accessibility barriers.

3 QUALSTATE
This section presents QualState, our proposed solution to address
the challenge of the evaluation of the accessibility of SPAs. Qual-
State is an independent module that uses the Puppeteer [13] frame-
work to control the browser and execute a set of actions to explore
a SPA and find as many different states as possible.

Puppeteer is a Node.js framework that provides several APIs to
control the browser through the Chrome DevTools protocol. The
framework provides, in addition to these, other APIs that allow
debugging websites and automating tests. Puppeteer is mostly used
to automate tests in the browser. However, in the context of this
work, it is used to carry out actions to reach different states.

The following sections introduce QualState, starting by introduc-
ing the main concepts and components it uses. This is followed by
a description of QualState’s architecture. Next, the workflow of the
crawling process implemented in QualState is explained. Finally,
we briefly describe how it was integrated with QualWeb to conduct
accessibility evaluations of the states found by QualState.

3.1 Main concepts
This section introduces the main concepts required to understand
QualState. To facilitate comprehension, we start with a generic
description of how QualState operates. QualState starts by loading
a page whose URL has been provided by the user. After the page
is loaded, actions are executed on the page to try to generate new
states. After each action, QualState checks whether the current
state has already been found and saved. This process is repeated
until there are no more actions or until the maximum number of
states specified by the user has been reached.

3.1.1 Action. The action is a crucial concept in QualState. An action
represents, as the name indicates, an action that can be performed
on elements of the web page. An action is represented by a JSON
object that contains information about how it should be carried
out. There are two types of actions: automatic actions and manual
actions. These are distinguished by the way they are obtained: auto-
matic actions are those found by QualState through the processing
of the web page. Manual actions are those added by the user, using
the interactions configuration option.

Automatic actions always have the same structure. They are
described by five properties:

• user: indicates whether the action is manual or automatic.
• id: identification of the element on which the action is to be
performed.

• className: the element’s class.
• eventType: type of event to be performed.
• selector: the element’s selector.

99

QualState: Finding Website States for Accessibility Evaluation W4A ’24, May 13–14, 2024, Singapore, Singapore

The structure of manual actions depends on the information the
user provides. The complete structure has 4 properties:

• user: indicates whether the action is manual or automatic.
• beforeAction: specifies what must be performed before
the endAction is executed, usually associated with entering
content on an input field.

• endAction: specifies the last instruction to be performed,
associated with an event to be triggered on an element of
the page.

• wait: the time towait after any instruction carried out within
the action.

3.1.2 State. A state is a representation of the DOM of a webpage.
During the crawling process, states go through two phases: com-
parison and persistence. QualState maintains one set at any time
for the states that are found. When the crawling process reaches
a new state, this is compared to the states already found. If it is a
new state then it is persisted to the set, otherwise it is discarded.

3.1.3 Interaction. As mentioned earlier, crawlers that are limited
to “pressing” buttons are limited in the amount of exploration they
can carry out, because, often, some kind of interaction is needed to
expand the search for states. To facilitate this process, QualState
offers the user the possibility of providing a set of data relevant
to the exploration to be carried out. These instructions allow the
user to provide as many inputs as appropriate, to allow the tool
to explore the largest number of states. These states can also arise
through inputs that generate errors, such as entering the wrong
password or numerical values that exceed an established limit.

These instructions correspond to the interaction concept. Qual-
State supports different types of instructions: forms instructions
are used to add one or more actions associated with form elements
found; inputs instructions are used to manage input elements
identified in the crawling process; and directions instructions are
used to direct the exploration to specific paths inside the SPA.

The forms instructions are characterised by three properties:

• input: Identifies the form elements that should be filled
by QualState. It is a set of property-value pairs, where the
property specifies the id of the form element to fill and the
value is the content to be entered in the element.

• action: Identifies the form elements that will be the target of
an event. This object contains the id of the form element and
the type of event that is to be triggered on the element. For
example, it can provide the id of the form’s Submit button,
and the click event to submit the form.

• info: Identifies the form where the input and action will
be performed. The info object may also include the wait
property to specify the time, in milliseconds, the crawling
process should wait after any action within the form is exe-
cuted.

The inputs object is used for QualState to manage input ele-
ments that may be encountered during crawling. This allows the
user to test correct and incorrect values for every input element
desired, thus finding states that arise when an incorrect input is
presented and states that arise when the correct input is placed.
The inputs instructions are characterised by two properties:

• value: Identifies the input element to be filled by QualState.
It is a set of property-value pairs, where the property speci-
fies the id of the input element and the value is the content
to be entered in the element.

• info: Contains the wait property, used to specify the time,
in milliseconds, that the crawling process should wait after
filling an input element. This is useful, for example, in those
instances where filling a field triggers a response that needs
to fetch data from a server request. By specifying a delay
before proceeding, the user can ensure there is enough time
for the request to be answered.

During the crawl process, the user may feel that there is no
need to explore certain paths, preferring to focus the resources on
trying to reach other states they are more interested in. As such,
QualState offers the user the option of providing instructions that
direct the crawl to the desired path. The directions instructions
are characterised by two properties:

• actions: Contain properties to direct how the crawl process
should proceed. Each action is defined by three properties:
– values: Contains one or more property-value pairs, defin-
ing the id of an element and the value that the user wants
QualState to insert in the element during the crawling.

– action: Specifies an element on the page and the type of
event to perform on the element to trigger a desired result.
The action object requires the id of the element, and the
event that should be triggered on the element.

– info: Contains the wait property representing the time,
in milliseconds, the process must wait after any action
performed.

• info: Specifies how the crawling should proceed after a di-
rection instruction is executed. This can be specified by com-
bining two properties. The crawl attribute indicates whether
or not the crawl process should continue after completing
a direction. This attribute can take one of two possible val-
ues: “stop” and “continue”. The save attribute is used to
indicate whether the states that are crossed when following
the directions instructions should be saved or discarded.
This allows the user to direct the crawling to a specific state
of the SPA and start saving states only after reaching it.

3.1.4 Configuration. Users can provide a set of configurations to
customize state exploration and can add instructions to be executed
during the crawling process. Even though this is not a concept
specific to QualState, these settings are a crucial part of its operation.

• url: Specifies the URL of the SPA to explore.
• headless: Indicates whether Puppeteer should be run in
headless mode (i.e., without the graphical UI) or not.

• waitTime: Specifies the time, in milliseconds, that QualState
should wait before and after any action. Whenever QualState
initially loads a page, it waits for it to complete loading before
continuingwith the process. However, it is common for a SPA
to not load any more pages after the initial one, instead only
updating the content of the already loaded page. Through
this setting, the user can specify a waiting time between
actions to ensure the SPA can complete the changes to a
page before continuing the crawling.

100

W4A ’24, May 13–14, 2024, Singapore, Singapore Filipe Rosa Martins, Letícia Seixas Pereira, and Carlos Duarte

• maxStates: Defines the maximum number of states the user
wishes to find. When the maximum number is reached, the
crawling is terminated.

• numberOfProcess: Number of crawling processes running
concurrently to allow the process to be completed faster.

• viewport: Specifies the characteristics of the browser’s view-
port so the SPA can be crawled in different contexts. The
following properties can be defined: mobile, landscape,
userAgent and resolution.

• log: Selects where to display the crawl results. Two Boolean
properties are used: file and console.

• ignore: Identifies which of the page’s elements will be ig-
nored during the crawl process. The user can specify those
elements in two ways. Using the ids_events property, the
user can specify elements where events should not be trig-
gered during the crawling process. Using the ids_compare
property, the user can specify which elements should be
ignored when deciding if a state is a new state or not. The
latter possibility is useful, for example, when there are ele-
ments with content that auto-updates (e.g., a clock or a stock
ticker) and therefore would represent a new state with each
update. Even though certain elements can be ignored during
the crawling, they will always be present in the states saved
as output of QualState.

• cookies: Allows users to dismiss the cookies notice. For
that, three properties can be specified. waitBefore defines
the time QualState should wait after the page is loaded. btn
identifies the button QualState should trigger to dismiss the
cookies notice. waitAfter defines the time QualState should
wait after triggering a click event on the specified button.

• login: Allows users to specify login credentials required
to authenticate in the SPA. The login object is an array of
objects defining the steps required for logging in. Each of
the objects can be of one type: wait specifying the time
the process should pause before moving to the next step;
action specifying an action to be performed, such as clicking
a login button; and credentials used to specify the value
that should be entered by QualState in input fields, such as
a username or a password.

3.2 Architecture
QualState architecture aims to be as modular as possible, making it
a more scalable solution that is easy to reuse andmaintain (Figure 2).
In the following, we detail the main modules and their processing.

3.2.1 Events. The events module is responsible for finding all the
events on a given page, to identify the set of actions to be performed.

Obtaining events is carried out in two phases. The first phase
uses the DomDebugger.getEventListeners function provided by
the Chrome DevTools protocol to check whether an element has an
event or not, and, if so, what event it is. The second phase is a filter-
ing process for all the elements on the page that can be activated
by users without requiring an explicit event. The process filters all
the elements <a> and <input type = 'submit'>, because, even
without associated events, they are processed by user agents (i.e.,

Figure 2: QualState’s architecture

browsers) as if they had a click event, which means they can gen-
erate a new state. Finally, after finding all the actionable elements,
each one is transformed into an action.

3.2.2 Actions. The actions module carryies out the actions nec-
essary to reach a state. To do this, the performAction method is
provided. The method receives an array of actions (see section 3.1.1)
to perform. For automatic actions an event is triggered, while for
manual actions there is the possibility of performing input actions.

3.2.3 HTML. QualState relies on being able to identify elements on
a page to crawl the SPA. While many elements will already have an
id provided by the developer, it is not possible to rely on that when
trying to explore all states. For that reason, QualState automatically
generates a selector for each element on the page and uses it to
uniquely identify the element. The html module is responsible for
processing the page to add or remove the _selector attribute to
every element.

3.2.4 Interactions. The interactions module processes instruc-
tions for interactions that the user wants to happen. These are
processed in three sub-modules: inputs, forms and directions.

The inputs module has two responsibilities: to check whether
the input element exists on the page and to process the input in-
struction into amanual action. Themodule receives the set of inputs
provided via the inputs option and the state the crawl is in. It then
checks if all the elements of the input set are present in the state. If
they are, the input is transformed into a manual action.

The forms module is responsible for processing the data from
the forms option. This module processes the information in a very
similar way to the inputs module. Initially, the module receives
the set of forms the user entered, and the state the crawl is in. It
then checks that the form element exists on the state. If it does, the
form is transformed into a manual action.

The directions module has the responsibility of receiving and
executing the directions instructions provided by the user. The
process involves interpreting the execution of each instruction,
transforming them into one or more actions.

101

QualState: Finding Website States for Accessibility Evaluation W4A ’24, May 13–14, 2024, Singapore, Singapore

3.2.5 Logger. The logger module is responsible for recording all
the outputs resulting from the crawl. The logs can be made to
the console or files and are divided into two categories: info and
error. The console’s logs display the information on the console,
distinguished by category. The file’s logs are written in two files:
“logs.log” and “states.log”. The former stores all the information
about the actions performed, with each log entry associated with a
hash representing the state where it originated. The latter stores
all states found. Each state is described by a hash representing the
state and the complete state string.

3.2.6 QualState. The qualstate module coordinates the entire
crawling process. This module is responsible for starting and ending
the crawling. It is also in this module that all the tasks are delegated,
including: 1) validating the options given by the user, 2) searching
for events, 3) managing how the forms, inputs and directions
are controlled, and finally, 4) comparing states.

3.3 Workflow
This section provides further details about the processing of infor-
mation by the QualState crawler.

Once the process has started, the first task is to check that the
settings are correct. In the event of a problem with the structure
of options or an incorrect option, an error message is displayed
and the process is immediately terminated. After validating the
settings, the initial setup is carried out. This includes initializing
the variables and starting the browser, loading a page with the URL
that the user has provided in the settings.

Before the crawl process starts, QualState processes any cookies
or login configuration that the user provided in the configuration
file. It then checks whether any directions need to be executed.
If so, these are processed. The process starts by creating a queue
just for the directions before starting the crawling. During the
processing, a set of manual actions is created for each direction
that must be executed. After each manual action, QualState checks
whether or not the status should be saved according to what was
specified in the directions configuration. The process of saving
the state involves initially obtaining a hash of the state. It then
checks for elements that are to be ignored, and if so, these elements
are removed from the state. Then, regardless of whether or not
elements have been removed, another hash of the state is obtained.
This hash is then compared with the others in the comparing set.
If the hash is repeated, then the state is repeated and the process
ends. If the hash does not exist in the comparing set, QualState has
found a new state. In this instance, the state is persisted by placing
the changed hash in the comparing set and the original hash in
the evaluating set along with the string version of the state. At the
end of executing the set of directions, the crawl configuration is
checked. If it is set to continue, QualState will collect the events,
forms and inputs in this state. If it is set to stop, the process ends.
This process is repeated until the directions queue is complete.

After executing the directions, QualState has created a set of
automatic actions for the events and manual actions for the forms
and inputs. The state is then saved and a new queue with all the
actions obtained previously is created. After filling in the queue,
the SPA is explored - for each element in the queue, the page is
set up. This setup includes creating a tab within the browser using

the viewport configuration. Once the page has been created, the
actions are executed. Once the actions have been completed, the
actions in the new state are obtained. These actions include auto-
matic actions, i.e., all the events present in the current state, and
manual actions, i.e., forms and inputs that may exist on the page.

The next step is to check whether the state has already been
found and, consequently, decide whether or not it should be saved.
The process of confirming whether the state exists starts by remov-
ing any elements that have been marked for not comparing and
then confirming whether or not the state is repeated by comparing
it with the states saved so far. If the state is not repeated it is saved.
The process then continues to the next phase.

The last step of each execution is to populate the queue with
the new actions found on the state, thus inserting more elements
into the queue which will continue its process until it runs out of
elements. While the queue is being processed there is only one
stopping condition: if at any time the maximum number of states
is reached, then the queue is terminated and the process moves on
to the final phase. In the final phase, the browser is closed and the
necessary information is presented to the user via the console or
stored in a file, depending on the configuration selected.

The whole processing workflow is visually depicted in Figure 3.

3.4 QualWeb integration
One of the goals of this work is, in addition to developing a solution
that can obtain as many states as possible, to evaluate the accessi-
bility of the page taking into account its different states. Thus, it
was necessary to integrate QualState with QualWeb. As such, when
using QualWeb, users can configure it to use QualState and thus
have an accessibility report for all the states found.

A change to QualWeb’s reporting format was required when
using QualState. The change reflects that there may be one or more
state evaluations for the same URL. As such, the new reporting
structure for each page includes an array, where each element of
the array contains the accessibility assessment for each identified
state in the URL. Given this change in the reporting structure, at the
moment, the option to generate reports in EARL format in QualWeb
is not available when using QualState.

4 EVALUATION
To perform an initial evaluation of QualState’s performance and
contribution to accessibility evaluation, we conducted two sets of
tests on different SPAs. All the tests were carried out on a computer
with an Intel(R) Core(TM) i7-7700HQ processor running at 2.80GHz
- 2.81 GHz, with 12 GB of RAM, on Windows 10.

The tests were carried out on the following SPAs:
• Plant221 - SPA with a limited set of identifiable states com-
prising different media elements.

• PLACM2 - SPA with visualizations of accessibility data, with
a very large number of states.

• Portuguese Accessibility Observatory3 - SPA with tabular
presentation of accessibility data, with a very large number
of states.

1https://plant22.co/ (accessed February 2024)
2http://qualweb.di.fc.ul.pt/placm/assertions/continent/ (accessed February 2024)
3https://observatorio.acessibilidade.gov.pt/directories (accessed February 2024)

102

https://plant22.co/
http://qualweb.di.fc.ul.pt/placm/assertions/continent/
https://observatorio.acessibilidade.gov.pt/directories

W4A ’24, May 13–14, 2024, Singapore, Singapore Filipe Rosa Martins, Letícia Seixas Pereira, and Carlos Duarte

Figure 3: QualState process flow

To assess the contribution of QualState to the performance of
QualWeb, we compared the outcomes of QualWeb with and without
QualState. The first set of tests consisted of exploring how many
additional accessibility tests can be done by using QualWeb with
QualState when compared with QualWeb without QualState. The
test consisted of running QualWeb without QualState and running
QualWeb with QualState limited to 2, 3, 5 and 10 maximum number
of states, to understand the impact of exploring more states.

Tables 4, 5 and 6 present the number of tests by outcome that
were executed by QualWeb for the Plant22, PLACM and Portuguese
Accessibility Observatory SPAs, respectively, averaged by the num-
ber of states that were assessed.

The QualWeb version that was used contained a total of 82 tests.
In every state, 82 tests were executed, which explains that the total
number of tests averaged by the number of states is always equal to
82. The impact of QualState can be seen in the decrease in the aver-
age number of tests that are inapplicable when the number of states

Max States 1 2 3 5 10
Passed tests 11 27 38 66 126
Warning tests 7 16 25 43 88
Failed tests 3 6 10 16 35

Inapplicable tests 61 115 173 285 571
Total tests 82 164 246 410 820

Table 1: Number of tests executed by QualWeb on Plant22
per maximum number of states evaluated.

Max States 1 2 3 5 10
Passed tests 19 42 63 105 210
Warning tests 10 20 30 50 100
Failed tests 2 4 6 10 20

Inapplicable tests 51 98 147 245 490
Total tests 82 164 246 410 820

Table 2: Number of tests executed by QualWeb on PLACM
per maximum number of states evaluated.

Max States 1 2 3 5 10
Passed tests 24 51 77 131 268
Warning tests 9 21 33 57 120
Failed tests 1 7 13 25 60

Inapplicable tests 48 85 123 197 372
Total tests 82 164 246 410 820

Table 3: Number of tests executed by QualWeb on the Por-
tuguese Accessibility Observatory per maximum number of
states evaluated.

States 1 2 3 5 10
Passed 11 13.5 12.7 13.2 12.6
Warning 7 8 8.3 8.6 8.8
Failed 3 3 3.3 3.2 3.5

Inapplicable 61 57.5 57.7 57 57.1
Total 82 82 82 82 82

Table 4: Number of tests per outcome executed by QualWeb
on Plant22 averaged by number of states evaluated.

increases. Correspondingly, the number of passed, warning and
failed tests increases. What this translates to, is that, by exploring
more states, QualWeb can find more elements that are applicable
to tests that were not applicable in the initial state. For instance,
in the Plant22 evaluation of the initial state, the WCAG technique
test “QW-WCAG-T8”, which tests whether the content of a text
alternative for an image is appropriate or not, was found to be inap-
plicable, meaning no images with alternative text had been found.
When evaluating the second state, the same test returned a warning,
meaning that an image with a text alternative had been found (and
needed to be checked by a human for its appropriateness).

As can be observed by analysing the tables, there is a clear
tendency for the decrease of the number of inapplicable tests as the
number of states increases. Nevertheless, it is also clear that the

103

QualState: Finding Website States for Accessibility Evaluation W4A ’24, May 13–14, 2024, Singapore, Singapore

States 1 2 3 5 10
Passed 19 21 21 21 21
Warning 10 10 10 10 10
Failed 2 2 2 2 2

Inapplicable 51 49 49 49 49
Total 82 82 82 82 82

Table 5: Number of tests per outcome executed by QualWeb
on PLACM averaged by number of states evaluated.

States 1 2 3 5 10
Passed 24 25.5 25.7 26.2 26.8
Warning 9 10.5 11 11.4 12
Failed 1 3.5 4.3 5 6

Inapplicable 48 42.5 41 39.4 37.2
Total 82 82 82 82 82

Table 6: Number of tests per outcome executed by QualWeb
on the Portuguese Accessibility Observatory averaged by
number of states evaluated.

Figure 4: The PLACM SPA showing a bar chart of accessibility
data grouped by continent.

impact is dependent on the characteristics of the web application.
This is clear in the numbers for PLACM. PLACM’s presentation is
very similar in all renderings. As can be seen in Figure 4, PLACM
presents a bar chart of accessibility data and a set of filters to control
the presentation. The chart can be selected to drill down on the data,
which can also be achieved by selecting different data levels on the
left side menu. Except for the “Administration” and “About” pages,
all the pages follow this same structure. This is the reason why
there is a decrease in the number of inapplicable outcomes from
the first to the second states, but no further evolution for the next
8 states. Because we limited the number of states to be analysed
to 10, in the evaluation we did not reach other types of “pages” of
the PLACM SPA. However, we see that, for both Plant22 and the
Portuguese Accessibility Observatory, even a small increase in the
number of states evaluated leads to a consistent increase in the
tests that can be applied by QualWeb, which reveals the ability to
find more elements to evaluate.

The second set of tests was focused on the performance of Qual-
State. These tests tried to gauge how the number of processes
running concurrently influences the number of states found at the

1 process 5 processes 10 processes
1 minute 6 13 13
2 minutes 13 14 14
3 minutes 13 14 20

Table 7: Number of different states found per search time
and number of processes running for the Plant22 SPA.

1 process 5 processes 10 processes
1 minute 18 80 128
2 minutes 48 230 415
3 minutes 80 377 715

Table 8: Number of different states found per search time
and number of processes running for the PLACM SPA.

1 process 5 processes 10 processes
1 minute 6 21 31
2 minutes 15 68 100
3 minutes 25 120 150

Table 9: Number of different states found per search time and
number of processes running for the PortugueseAccessibility
Observatory SPA.

same time. The tests were carried out on the same set of websites.
Tables 7, 8 and 9 present the number of different states found run-
ning QualState during 1, 2 or 3 minutes with 1, 5 or 10 concurrent
processes.

The tables show that, as expected, increases in both the time for
crawling and the number of crawling processes lead to increases in
the number of states found.

Evenwith only just this initial, small evaluation, it was possible to
verify that QualWeb using QualState performs a higher number of
accessibility checks during a single evaluation. The new exploration
functionality results in a more complete accessibility assessment,
which is not limited to the initial state of a web page.

5 CONCLUSIONS AND FUTUREWORK
QualState presents a solution to the problem of automatically assess-
ing the accessibility of dynamic web pages, i.e., pages that update
the content being presented to the user without loading a new page.
QualState is capable of crawling the different states of a web page
and can be configured to interact with certain elements and ignore
others. This allows users to trigger, for example, error and success
states in forms. It can also be configured to fill out login information
and dismiss cookie banners, thus supporting the exploration of, for
example, intranets and other websites that require authentication.

By integrating QualState with QualWeb, an automated web ac-
cessibility evaluation engine, we have benefited from the crawling
ability to augment the usefulness of this accessibility evaluation
tool. Early testing shows improvements in the number of applicable
elements found on pages that have multiple states, compared to the
elements that can be assessed without the crawling possibility.

104

W4A ’24, May 13–14, 2024, Singapore, Singapore Filipe Rosa Martins, Letícia Seixas Pereira, and Carlos Duarte

Despite the positive initial results, further research into aspects
of this tool would be extremely beneficial. Two perspectives in
particular need to be considered. One is the ability to automati-
cally explore different types of events. Currently, QualState only
responds to click events. Even though these are the more common
events associated with interactivity and navigation in web pages,
in the future, to ensure a more complete crawling process, it would
be useful to consider other types of events. The second perspective
is related to the way states are compared. Different combinations
of user agents and assistive technology can result in different ren-
derings of the same DOM. It would be interesting to explore how
these could impact state comparison and exploration but also to
use that information to automate state exploration for users with
different functional needs. For example, a change in the colour of
an element could represent a new state relevant to a user who can
see the element but would be irrelevant to a screen reader user.
Finally, it is paramount to conduct a more in-depth evaluation of
the benefits of state crawling for web accessibility evaluation.

ACKNOWLEDGMENTS
This work was supported by FCT through the LASIGE Research
Unit, ref. UIDB/00408/2020 (https://doi.org/10.54499/UIDB/00408/
2020) and ref. UIDP/00408/2020 (https://doi.org/10.54499/UIDP/
00408/2020)

REFERENCES
[1] Julio Abascal, MyriamArrue, and Xabier Valencia. 2019. Tools forWeb Accessibility

Evaluation. Springer, London, 479–503. https://doi.org/10.1007/978-1-4471-7440-
0_26

[2] Hayfa.Y. Abuaddous, Mohd Zalisham Jali, and Nurlida Basir. 2016. Web Acces-
sibility Challenges. International Journal of Advanced Computer Science and
Applications 7, 10 (2016), 172–181. https://doi.org/10.14569/IJACSA.2016.071023

[3] Humberto Lidio Antonelli, Leonardo Sensiate, Willian Massami Watanabe, and
Renata Pontin de Mattos Fortes. 2019. Challenges of automatically evaluating rich
internet applications accessibility. In Proceedings of the 37th ACM International
Conference on the Design of Communication (Portland, Oregon) (SIGDOC ’19).
Association for Computing Machinery, New York, NY, USA, Article 32, 6 pages.
https://doi.org/10.1145/3328020.3353950

[4] Trevor Bostic, Jeffrey Stanley, John Higgins, Daniel Chudnov, Justin Brunelle,
and Brittany Tracy. 2021. Automated Evaluation of Web Site Accessibility Using
A Dynamic Accessibility Measurement Crawler. arXiv:2110.14097 [cs.IR] https:
//arxiv.org/abs/2110.14097

[5] BroadbandSearch.net. 2024. Key Internet Statistics in 2024. https://www.
broadbandsearch.net/blog/internet-statistics#post-navigation-0.

[6] Milton Campoverde-Molina, Sergio Luján-Mora, and Llorenç Valverde Gar-
cía. 2020. Empirical Studies on Web Accessibility of Educational Websites:
A Systematic Literature Review. IEEE Access 8 (2020), 91676–91700. https:
//doi.org/10.1109/ACCESS.2020.2994288

[7] Cantan Group. 2023. ACHECKS Accessibility Checker. https://www.achecks.org/.
[8] Deque. 2024. Axe Accessibility Testing Tool. https://www.deque.com/axe/.
[9] ETSI. 2021. Accessibility requirements for ICT products and ser-

vices. https://www.etsi.org/deliver/etsi_en/301500_301599/301549/03.02.01_
60/en_301549v030201p.pdf.

[10] Faculdade de Ciências da Universidade de Lisboa. 2024. Qualweb Accessibility
Evaluator. https://qualweb.di.fc.ul.pt/evaluator/.

[11] Nádia Fernandes, Ana Sofia Batista, Daniel Costa, Carlos Duarte, and Luís Carriço.
2013. Three Web Accessibility Evaluation Perspectives for RIA. In Proceedings of
the 10th International Cross-Disciplinary Conference on Web Accessibility (Rio de
Janeiro, Brazil) (W4A ’13). Association for Computing Machinery, New York, NY,
USA, Article 12, 9 pages. https://doi.org/10.1145/2461121.2461122

[12] General Services Administration. 2023. Section 508. https://www.section508.gov/.
[13] Google. 2024. Puppeteer. https://pptr.dev/.
[14] Nicola Iannuzzi, Marco Manca, Fabio Paternò, and Carmen Santoro. 2023. Large

Scale Automatic Web Accessibility Validation. In Proceedings of the 2023 ACM
Conference on Information Technology for Social Good (Lisbon, Portugal) (GoodIT
’23). Association for Computing Machinery, New York, NY, USA, 307–314. https:
//doi.org/10.1145/3582515.3609549

[15] Jonathan Lazar. 2022. Managing Digital Accessibility at Universities during
the COVID-19 Pandemic. Univers. Access Inf. Soc. 21, 3 (aug 2022), 749–765.
https://doi.org/10.1007/s10209-021-00792-5

[16] Manuel Leithner and Dimitris E. Simos. 2020. XIEv: dynamic analysis for
crawling and modeling of web applications. In Proceedings of the 35th An-
nual ACM Symposium on Applied Computing (Brno, Czech Republic) (SAC
’20). Association for Computing Machinery, New York, NY, USA, 2201–2210.
https://doi.org/10.1145/3341105.3373885

[17] Yan Li, Peiyi Han, Chuanyi Liu, and Binxing Fang. 2018. Automatically Crawling
Dynamic Web Applications via Proxy-Based JavaScript Injection and Runtime
Analysis. In 2018 IEEE Third International Conference on Data Science in Cyberspace
(DSC). IEEE, 242–249. https://doi.org/10.1109/DSC.2018.00042

[18] Chien-Hung Liu, Woei-Kae Chen, and Chi-Chia Sun. 2020. GUIDE: an interac-
tive and incremental approach for crawling Web applications. The Journal of
Supercomputing 76 (03 2020). https://doi.org/10.1007/s11227-018-2335-4

[19] Beatriz Martins and Carlos Duarte. 2023. A large-scale web accessibility analysis
considering technology adoption. Universal Access in the Information Society
(July 2023). https://doi.org/10.1007/s10209-023-01010-0

[20] Beatriz Martins and Carlos Duarte. 2024. Large-scale study of web accessibility
metrics. Universal Access in the Information Society 23, 1 (March 2024), 411–434.
https://doi.org/10.1007/s10209-022-00956-x

[21] MDN contributors. 2022. Populating the page: how browsers work.
https://developer.mozilla.org/en-US/docs/Web/Performance/How_browsers_
work#parsing.

[22] Ali Mesbah and Arie van Deursen. 2007. Migrating Multi-page Web Applications
to Single-page AJAX Interfaces. In 11th European Conference on Software Main-
tenance and Reengineering (CSMR’07). IEEE, 181–190. https://doi.org/10.1109/
CSMR.2007.33

[23] AliMesbah, Arie vanDeursen, andDanny Roest. 2012. Invariant-BasedAutomatic
Testing of Modern Web Applications. IEEE Transactions on Software Engineering
38 (2012), 35–53.

[24] Seyedamirhossein Mousavi. 2017. Maintainability Evaluation of Single Page
Application Frameworks : Angular2 vs. React. , 39 pages.

[25] Gonzalo Navarro. 2001. A guided tour to approximate string matching. ACM
Comput. Surv. 33, 1 (mar 2001), 31–88. https://doi.org/10.1145/375360.375365

[26] Nezih Sunman, Yiğit Soydan, and Hasan Sözer. 2022. Automated Web application
testing driven by pre-recorded test cases. Journal of Systems and Software 193
(07 2022), 111441. https://doi.org/10.1016/j.jss.2022.111441

[27] W3C. 2018. Evaluation and Report Language (EARL) Overview. https://www.
w3.org/WAI/standards-guidelines/earl/.

[28] W3C. 2022. Understanding the Four Principles of Accessibility.
https://www.w3.org/WAI/WCAG21/Understanding/intro#understanding-
the-four-principles-of-accessibility.

[29] W3C. 2023. WCAG 2 Overview. https://www.w3.org/WAI/standards-guidelines/
wcag/.

[30] W3C. 2024. About ACT Rules. https://www.w3.org/WAI/standards-guidelines/
act/rules/about/.

[31] WebAIM. 2024. WAVE Web Accessibility Evaluation Tool. https://wave.webaim.
org/.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

105

https://doi.org/10.54499/UIDB/00408/2020
https://doi.org/10.54499/UIDB/00408/2020
https://doi.org/10.54499/UIDP/00408/2020
https://doi.org/10.54499/UIDP/00408/2020
https://doi.org/10.1007/978-1-4471-7440-0_26
https://doi.org/10.1007/978-1-4471-7440-0_26
https://doi.org/10.14569/IJACSA.2016.071023
https://doi.org/10.1145/3328020.3353950
https://arxiv.org/abs/2110.14097
https://arxiv.org/abs/2110.14097
https://arxiv.org/abs/2110.14097
https://www.broadbandsearch.net/blog/internet-statistics#post-navigation-0
https://www.broadbandsearch.net/blog/internet-statistics#post-navigation-0
https://doi.org/10.1109/ACCESS.2020.2994288
https://doi.org/10.1109/ACCESS.2020.2994288
https://www.achecks.org/
https://www.deque.com/axe/
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/03.02.01_60/en_301549v030201p.pdf
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/03.02.01_60/en_301549v030201p.pdf
https://qualweb.di.fc.ul.pt/evaluator/
https://doi.org/10.1145/2461121.2461122
https://www.section508.gov/
https://pptr.dev/
https://doi.org/10.1145/3582515.3609549
https://doi.org/10.1145/3582515.3609549
https://doi.org/10.1007/s10209-021-00792-5
https://doi.org/10.1145/3341105.3373885
https://doi.org/10.1109/DSC.2018.00042
https://doi.org/10.1007/s11227-018-2335-4
https://doi.org/10.1007/s10209-023-01010-0
https://doi.org/10.1007/s10209-022-00956-x
https://developer.mozilla.org/en-US/docs/Web/Performance/How_browsers_work#parsing
https://developer.mozilla.org/en-US/docs/Web/Performance/How_browsers_work#parsing
https://doi.org/10.1109/CSMR.2007.33
https://doi.org/10.1109/CSMR.2007.33
https://doi.org/10.1145/375360.375365
https://doi.org/10.1016/j.jss.2022.111441
https://www.w3.org/WAI/standards-guidelines/earl/
https://www.w3.org/WAI/standards-guidelines/earl/
https://www.w3.org/WAI/WCAG21/Understanding/intro#understanding-the-four-principles-of-accessibility
https://www.w3.org/WAI/WCAG21/Understanding/intro#understanding-the-four-principles-of-accessibility
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/act/rules/about/
https://www.w3.org/WAI/standards-guidelines/act/rules/about/
https://wave.webaim.org/
https://wave.webaim.org/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Web Accessibility
	2.2 Web Accessibility Evaluation
	2.3 Single Page Applications
	2.4 Crawlers
	2.5 State comparison and evaluation

	3 QualState
	3.1 Main concepts
	3.2 Architecture
	3.3 Workflow
	3.4 QualWeb integration

	4 Evaluation
	5 Conclusions and Future Work
	Acknowledgments
	References

