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Abstract 
In today’s world, digital devices have a central role in the daily rou-
tine, being widely used for communication, work and leisure. The 
data created while interacting with these devices, known as digital 
footprints, can reveal patterns and behaviours that can be leveraged 
for health monitoring. Most tasks performed on digital devices, such 
as smartphones, involve typing text, which requires motor skills 
and cognitive functions. Previous works have been assessing typing 
behaviours and associating them with disease early detection, such 
as Parkinson’s disease, bipolar disorder and Alzheimer’s disease; 
and health states, such as fatigue and stress, with text-entry data 
predominantly collected in controlled conditions. However, these 
controlled environments might impact the typing patterns, failing 
to accurately represent the real-world settings. Therefore, assessing 
keystroke dynamics for health monitoring requires a shift from 
conventional in-the-clinic studies to in-the-wild assessments. In 
this work, we reflect on the potential of WildKey, a privacy-aware 
keyboard that collects text-entry data in the wild, as a digital foot-
print for health monitoring and disease detection. We also discuss 
the opportunities and challenges of digital footprints, namely their 
potential for continuous and reliable monitoring, and the associated 
privacy and ethical concerns. 
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1 Introduction 
The increasing use of digital technologies, such as smartphones, has 
generated a large volume of data in our daily lives, opening new op-
portunities to leverage the collected data for non-invasive and con-
tinuous health monitoring. Collected digital data, also known as dig-
ital footprints, can be used to identify behavioural patterns, emerg-
ing as valuable health digital biomarkers. Indeed, smartwatches 
and smartphone applications have been extensively used to track 
health-related metrics, such as physical activity, fertility, and blood 
glucose levels [21]. Additionally, data extracted from social media, 
particularly Twitter activity timing, has been shown to predict both 
mental well-being and sleep quality [11]. 

Digital footprints are divided into two main categories: passive, 
when data is collected in the background without the user’s input; 
and active, when a user intentionally shares information. Web-
tracking technologies (website cookies), search engines (browsing 
history), social media, tracking technologies (geolocation, wear-
ables, health logs), and text-entry (keystroke dynamics) are exam-
ples of technologies that act as digital footprints. 

Among these different types of digital footprints, text-entry be-
haviour data emerges as a promising source of data in the health 
context. Typing is one of the most frequent tasks when using digi-
tal devices; namely, when using search engines, writing an email, 
typing notes and tasks, exchanging text messages, and interacting 
on social media. Moreover, typing involves both coordinated and 
repetitive motor skills, as well as a high level of cognitive functions. 
In fact, individuals with low global cognition possibly related with 
Alzheimer’s disease were observed to be slower writers and to take 
more time to correct errors and initiate the next word [12]. There-
fore, assessing a person’s typing behaviour on digital devices, such 
as typing speed [14], errors [18] and touch dynamics [3], can reflect 
a person’s motor function and cognitive state, creating a digital 
footprint with high potential as a health digital biomarker. 

Wearable devices have been used to identify disease symptoms; 
however, since several diseases affect motor and/or non-motor 
functions, leading to a negative impact on typing performance, key-
stroke dynamics analysis in common devices, such as smartphones, 
was proven to be a good alternative to those dedicated wearable 
devices. Typing metrics have been used as digital biomarkers in 
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disease early detection [3, 9, 12, 13, 20, 25, 26] and to assess health 
states [1, 6, 15]. 

Most health monitoring systems still rely on self-reported data 
and physical activity tracking, overlooking the valuable insights 
provided by everyday typing patterns. In this work, we explore 
the potential of text-entry data as a digital biomarker for health 
monitoring, highlighting the role of WildKey, a privacy-aware key-
board designed for real-world data collection. We showcase Wild-
Key’s potential in two health monitoring case studies: IDEA-FAST 
and COTIDIANA. Additionally, we discuss the opportunities and 
challenges of exploring text-entry as a digital biomarker in health 
monitoring, particularly its advantage over traditional monitoring 
approaches and as a source of continuous and real-world data, as 
well as the concerns regarding user privacy and data usage. 

2 Related Work 
The growing adoption of digital technologies, including smart-
phones, has led to the generation of vast amounts of data in our 
daily activities. Digital footprints, i.e. the data created by a per-
son while interacting with electronic devices and using the inter-
net, can reveal a person’s behaviours and lifestyle. Leveraging this 
data has become a hot topic in multiple research fields, namely in 
health, enabling a data-driven approach to individual and public 
health monitoring. Compared to the traditional in-clinic monitor-
ing methods provided by healthcare professionals, digital devices 
have the advantage of collecting data that can characterise a per-
son’s health status in a continuous, non-invasive and quantitative 
way. Digital footprint data can arise from multiple technologies; 
for example, previous research has demonstrated the potential of 
social media usage in tracking mental health behaviours [5, 11]. 
Furthermore, online activity or supermarket transactions have also 
been demonstrated to provide insights into the emotional state, 
treatment adherence, and symptom progression of cancer patients, 
since purchases of pain and indigestion medication acted as an early 
indicator of ovarian cancer [4]. Moreover, medication sales data 
were also integrated into respiratory disease forecasting models 
[8]. 

Text-entry data also stands out as a promising technology in 
health monitoring and research, as typing patterns reflect motor 
abilities and cognitive functions. Previous research has explored 
the analysis of text-entry metrics, such as typing speed [14], errors 
[18] and touch dynamics [3], for health applications. Studies have 
shown that keystroke dynamics can be used as digital biomarkers 
in multiple disease conditions, such as Parkinson’s disease [2, 3, 
7, 9, 25], bipolar disorder [26], mild cognitive impairment [20], 
multiple sclerosis [13] and Alzheimer’s disease [12], revealing the 
huge potential of text-entry data for early detection and monitoring. 
Besides the proven potential in disease detection, text-entry data has 
also been used to assess health states, such as stress [6], fatigue [1] 
and inebriation [15]. Moreover, combining keystroke dynamics with 
other data sources might provide better models. The combination 
of accelerometer data while typing and keystroke dynamics have 
been explored to provide a more comprehensive understanding of 
brain functioning than only using the keystroke dynamics alone 
[19]. 

Despite the demonstrated potential of text-entry data as a health 
digital biomarker, most approaches are based on controlled envi-
ronments, restricting their application in the real-world. Previous 
research showed that typing performance varies between control 
conditions and real-world settings, suggesting that laboratory stud-
ies may not represent everyday typing patterns [18, 22]. Therefore, 
assessing keystroke dynamics for health monitoring requires a shift 
from conventional in-the-clinic studies to in-the-wild assessment. 
Several approaches for data collection in the wild have been devel-
oped, including prompting users to perform specific typing tasks 
or passive collection of typing metrics such as flight and hold times. 
Those approaches have limitations and depending on the situation 
a combination of those might be the right solution. For this reason, 
the WildKey toolkit was developed by our group to combine both 
prompted tasks and passive data collection, without storing any 
raw text data [24]. 

3 WildKey as a potential health monitoring tool 
The WildKey toolkit is an open-source and privacy-aware keyboard 
toolkit designed to collect data in both implicit (passive sensing) 
and explicit (prompted tasks) ways in the wild [24]. This allows 
people to monitor their health through both the day-to-day usage 
of their devices and/or by performing specific sampling tasks. As a 
regular keyboard, WildKey can analyse all written text despite the 
application a person is using. Moreover, we follow a privacy-by-
design approach, as no textual content is stored or shared. Collected 
metrics include words per minute (the number of words written by 
the user per minute), flight time (time taken between characters), 
hold time (time pressing a key), corrected error rate (percentage of 
corrected errors), uncorrected error rate (percentage of uncorrected 
errors) and total error rate, among others [24]. 

We have been exploring the WildKey toolkit in various projects 
to evaluate its potential use in health monitoring. In previous work, 
Rodrigues et al. [23] assessed the trade-offs of everyday text-entry 
collection methods using WildKey. Wildkey supports both experi-
ence sampling, where users can engage in four types of prompts 
(transcriptions, compositions, questionnaires, and custom-made 
tasks), and passive sampling, where all text-entry actions are anal-
ysed regardless of the application in use. The study found that 
typing performance and behaviours vary both between and within 
experience sampling and passive sensing. For example, passive sens-
ing is better suited for long-term data collection, as participants are 
less likely to use experience sampling for long periods, and passive 
collection does not require additional effort. On the other hand, 
participants generally performed better in experience sampling. 
Therefore, the choice of collection method should be guided by the 
context of the experimental design [23]. 

More recently, Matias et al. [16] used the WildKey in the creation 
of the COTIDIANA dataset, an open-access resource that combines 
smartphone-collected data on mobility and physical activity, finger 
dexterity, and mental health in Rheumatic and Musculoskeletal 
Diseases. Keystroke dynamics data collected with the Wildkey was 
integrated into the Keyboard Sentence Transcription (KST) activity 
together with the smartphone’s IMU sensors, giving insight into fine 
motor function. Results showed that keystroke-related variables 
(e.g., flight time) were associated with the performance of the fine 
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motor skill assessment test, highlighting WildKey’s potential as a 
monitoring tool. 

Furthermore, we are also exploring the WildKey keyboard as a 
potential digital biomarker within the IDEA-FAST project [10]. This 
project evaluates multiple digital health technologies, including the 
WildKey keyboard, in home settings to identify digital endpoints 
that provide objective, sensitive, and reliable assessments of fatigue 
and sleep. The aim is to enhance the treatment of symptoms in 
neurodegenerative and inflammatory diseases, with the help of ev-
eryday data collected seamlessly. So far, we have been exploring the 
typing behaviours across cohorts and concluded that participants 
with Parkinson’s disease are slower writers, i.e., write fewer words 
within a minute, and take more time changing keys (higher flight 
time). We also observed that demographic characteristics (age and 
gender), time of the day when a person writes and motor abilities 
affect the typing performance (words per minute and flight time) 
of patients with Parkinson’s disease, revealing the importance of 
including these covariables in future prediction models. 

So far, studies suggest that everyday text-entry data collected 
by WildKey holds significant potential as a digital footprint in 
health monitoring, providing insights into cognitive and motor 
performance. Moreover, these studies also highlight WildKey’s 
potential as a continuous and non-invasive tool in day-to-day life 
for assessing health conditions in real-world environments. 

4 Opportunities and Challenges 
In this highly technological era, where smartphones and other digi-
tal devices are an essential part of everyday life, digital footprints, 
such as text-entry patterns, offer valuable possibilities across multi-
ple areas. In healthcare, they can be explored as digital biomarkers 
for disease early detection, personalized healthcare and overall well-
being, supporting data-driven medical approaches. Traditionally, 
health monitoring relies on active participation, requiring individ-
uals to complete self-reports, undergo clinical tests, and attend 
medical appointments. This introduces a certain bias, as data collec-
tion depends on a person’s availability. On the other hand, digital 
footprints enable continuous, real-world data collection with 
minimal effort, providing a more objective view of a person’s health. 
However, in-the-wild data collection is often incomplete and 
noisy, requiring careful preprocessing and interpretation. To have 
an effective value, raw digital footprint data must be meaningfully 
integrated with clinical knowledge. 

Despite providing valuable insights into a person’s health state, 
digital footprints should not be seen as a replacement for medical 
diagnosis. They can serve as an additional source of information 
that patients can bring to clinical appointments, acting as a detailed 
backlog of their health over time. In this way, data could help med-
ical professionals in tracking patients’ symptoms and adjusting 
treatments accordingly. Furthermore, digital footprints enable 
remote monitoring, allowing early intervention measures, espe-
cially for patients in remote areas. Nevertheless, users’ perception 
of the symptoms might be influenced by the data, so it should be 
presented to the patients with care. Moreover, it is also important 
to evaluate the impact of digital devices on daily routine to select 
the best digital footprints. If a device negatively impacts daily life, 
whether by being uncomfortable to wear or difficult to use, it might 

discourage long-term use, compromising the goal of continuous 
monitoring. Integrating multiple digital biomarkers could also im-
prove the accuracy of health assessment. For instance, providing 
contextual data, such as activity data and time of day, could enhance 
the interpretation of behavioural patterns like typing, leading to 
more precise models. 

While promising, the use of text-entry metrics and other digital 
footprints raises several challenges and concerns regarding 
privacy and data security. In text-entry studies, these concerns 
have been addressed and data collection tools were designed not 
to capture any typed text or data that allow its reconstruction, 
as well as the used applications, preserving the users’ anonymity 
[24, 25]. Furthermore, users’ awareness that no raw data is being 
gathered enhanced their confidence in using text-entry data collec-
tion tools [23]. Therefore, maintaining transparency and providing 
data security might facilitate users’ consent for data collection. 

The use of digital footprints has also raised ethical con-
cerns, especially during the COVID-19 pandemic. In several coun-
tries, governments have used digital footprints to control the spread 
of the disease, disclosing patients’ information and violating pri-
vacy [17]. Legal frameworks and political support are essential to 
regulate the use of data without jeopardising individuals’ safety. 
Policy-makers play a vital role in ensuring the necessary legal 
frameworks and political support are in place to facilitate the effec-
tive use of data, and as such, it’s important to continue to engage 
these key stakeholders in the conversation. 

5 Outlook 
With the widespread of digital technologies, the role of digital foot-
prints is expanding to multiple fields. As discussed in this work, 
digital footprints have become an increasingly valuable tool in 
health monitoring. Text-entry data, in particular, has the potential 
to act as a continuous and non-invasive health-associated metric, 
providing insights into health states and disease conditions. Ad-
vancements in artificial intelligence and machine and deep learning 
models will enable the development of models with better per-
formance and accuracy. As digital footprints became widely used, 
questions about data ownership and privacy are raised, since users 
are often unaware that personal data is being collected and shared. 
Ensuring user consent and data collection transparency and privacy 
is crucial to the future of digital footprint in healthcare. 
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