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Abstract— Current assessments of fatigue and sleepiness rely
on patient reported outcomes (PROs), which are subjective and
prone to recall bias. The current study investigated the use of
gait variability in the “real world” to identify patient fatigue
and daytime sleepiness. Inertial measurement units were worn
on the lower backs of 159 participants (117 with six differ-
ent immune and neurodegenerative disorders and 42 healthy
controls) for up to 20 days, whom completed regular PROs.
To address walking bouts that were short and sparse, four
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feature groups were considered: sequence-independent variabil-
ity (SIV), sequence-dependant variability (SDV), padded SDV
(PSDV), and typical gait variability (TGV) measures. These gait
variability measures were extracted from step, stride, stance,
and swing time, step length, and step velocity. These different
approaches were compared using correlations and four machine
learning classifiers to separate low/high fatigue and sleepiness.

Most balanced accuracies were above 50%, the highest was
57.04% from TGV measures. The strongest correlation was
0.262 from an SDV feature against sleepiness. Overall, TGV
measures had lower correlations and classification accuracies.

Identifying fatigue or sleepiness from gait variability is
extremely complex and requires more investigation with a
larger data set, but these measures have shown performances
that could contribute to a larger feature set.

Clinical relevance— Gait variability has been repeatedly used
to assess fatigue in the lab. The current study, however, explores
gait variability for fatigue and daytime sleepiness in real-world
scenarios with multiple gait-impacted disorders.

I. INTRODUCTION

Fatigue and sleep disruptions are symptoms commonly
reported in individuals with neurological and immune dis-
orders. For instance, over 80% of those with systemic lupus
erythematosus (SLE) suffer from abnormal fatigue [1] and
fatigue in Parkinson’s disease (PD) has a reported prevalence
rate ranging from 33% to 58% [2].

A common method for assessing daytime sleepiness and
fatigue is collecting patient reported outcomes (PRO)s, where
the patients complete questionnaires and diaries designed
to record how the patient is feeling. PROs, however, are
subjective, prone to recall bias, and do not capture short-
term changes over time. Furthermore, evidence shows that
individuals who are sleep deprived are prone to underesti-
mating their fatigue-related impairments [3].

Wearable sensors would negate these downsides since
they would give objective, continuous reports on the pa-
tient’s physiological state. Inertial measurement units (IMU)s
(triaxial accelerometer and gyroscope) are becoming an
increasingly popular option for wearable technology, due the
affordability and suitability for use in patients’ homes.

Gait variability assesses step-to-step fluctuations and, in
data collected in the lab from healthy older adults, has
been shown to be impacted by physical fatigue [4], mental



fatigue [5], and sleepiness [6]. However, for personal or long
term use, gait variability must be usable in “free living”
environments. This introduces complications since natural
day-to-day bouts of walking are typically short and sparse,
especially for those with limited mobility. As such, the
current literature investigating gait variability mostly takes
place in a laboratory or hospital and the participants are
given a specific task to perform. A 2018 literature review
for gait analysis outside the lab found only 18 studies that
analysed the standard deviation (SD) and/or coefficient of
variation (CoV) of gait characteristics, predominantly step
time [7]. A 2022 study found that gait is largely variable in
the real world and also noted a lack of literature examining
natural gait variability [8]. Furthermore, to our knowledge,
no studies have specifically investigated the impact of fatigue
or sleepiness in adults on walking gait variability outside of
laboratory- or task-based procedures.

The current study aims to investigate the use of real-
world gait variability for identifying physical fatigue, mental
fatigue, and daytime sleepiness. Four feature groups indi-
vidually designed to overcome the short and sparse nature
of walking found in natural behaviour were compared using
correlations and popular machine learning classifiers.

II. MATERIALS AND METHODS

The data used in this analysis were collected at four
sites in Europe as part of the IDEA-FAST feasibility study
[9]. All participants provided informed consent and the
study was approved by all local ethics committees. The
participants included healthy controls (HC=42) and six
different neurodegenerative disorders (NDD) and immune-
mediated inflammatory diseases (IMID): Parkinson’s dis-
ease (PD=25), Huntington’s disease (HD=14), rheumatoid
arthritis (RA=24), systemic lupus erythematosus (SLE=18),
primary Sjogren’s syndrome (PSS=18), and inflammatory
bowel disease (IBD=18). The 159 participants wore various
sensors, 132 of which wore an IMU sensor on the lower
back for four periods of five consecutive days at home. The
IMU was a MoveMonitor device [10] with a sampling rate
of 100 Hz and a range of ±16g. During the trial period,
the participants answered the PRO questionnaires up to four
times daily. The physical fatigue (PF) and mental fatigue
(MF) were self reported on a scale of 0-6 and daytime
sleepiness (Karolinska’s sleepiness scale (KSS) [11]) on 0-9.

Bouts of walking that began in the two hour period before
each PRO submission were identified. Using the triaxial
accelerometer data, six gait characteristics were extracted
with validated methods [12]: step time, stride time, stance
time, swing time, step length, and step velocity. The gait
variability measures considered for extraction from these
six gait micro characteristics were inspired by heart rate
variability (HRV) analysis [13], [14]. Possible features were
separated into four gait variability feature groups: sequence-
independent variability (SIV), sequence-dependent variabil-
ity (SDV), padded SDV (PSDV), and typical gait variability
(TGV) measures. These four feature groups were designed to
handle the problem of short, sparse walking bouts in different

Fig. 1 A flowchart that shows the protocol for each feature set to be
compared. (a) gives an example of the gait characteristic data,

where the blue dots represent the gait data (here, the example is
step time) and the red, dashed lines represent when the

participant is not walking. (b) gives the concatenated data, where
non-walking periods are ignored. (c) gives the padded data,

where the non-walking periods are replaced with zeros. (d) gives
the feature sets extracted from each representation of the data.

ways. SIV, SDV, and TGV measures simply treated the data
as one continuous walking bout, ignoring the gaps where
the participant was sedentary. SIV used only measures of
variability where measures were independent of the data’s
sequence (order) and missing data did not introduce excess
noise: 16 statistical (SD, CoV, 20th and 80th percentiles,
successive differences analysis, etc.) and 23 Poincaré plot
analysis (SD perpendicular to the line, cardiac sympathetic
index, etc.) measures. Where successive differences were
required, only the differences between steps within the
same walking bout were extracted. SDV used measures that
depended on the temporal sequence of the data: six complex-
ity (three fractal dimensions (FD), Lempel-Ziv complexity
(LZC), etc.), three entropy (spectral, sample, and multiscale
sample (MSE)), and eight frequency analysis (frequency with
maximum amplitude, spectral power of low/high frequencies,
etc.) measures. Parameters such as frequency cut-offs and
entropy inputs (m = 2, r = 0.2×SD) were defined by HRV
[13]. PSDV extracted the same features as SDV, but padded
sedentary bouts with zeros at a frequency of typical human
walking (1/0.52 for step and stance, 1/1.04 for stride and
swing characteristics [15]), thus additionally encoding the
bout information (macro characteristics). TGV used the two
variability measures commonly used in gait research (SD and



CoV) as a “control” approach for comparison. This protocol
is outlined in Figure 1. Gait measures associated with a step
time ≤ 0.25s or ≥ 1.25s were removed and if less than 30
seconds of walking data were associated with a PRO, that
instance was not included. This resulted in 1771, 1729, and
1645 samples for PF, MF, and KSS, respectively, from 102
subjects. The number of input features for each of the six gait
micros were TGV=12, SIV=228, SDV=96, and PSDV=96.

Once these features were extracted for each gait charac-
teristic, they were classified as low fatigue/sleepiness (scores
of 0-2) or high fatigue/sleepiness (scores of 3 or above) [16]
with four popular machine learning classifiers: support vector
machine (SVM) with a radial basis function kernel, k-nearest
neighbours (kNN), random forest (RF), and Gaussian naive
Bayesian network (BayesNet). The features were prepared by
replacing missing values with the training-set median, then
equalising the classes with synthetic minority oversampling
technique (SMOTE) [17], and reducing the input dimension
with principal component analysis (PCA). The data were
split into train/test sets with 5-fold cross-validation, where
20% of the participants were excluded as the test data
for each fold. The classification performance of the four
feature groups were evaluated using balanced accuracy to
prevent skewed results from the imbalanced classes, with the
mean balanced accuracy of each fold reported in the results.
The classifier-input preparation and machine learning was
implemented with the scikit-learn package [18].

To investigate these features individually, their correla-
tions with each PRO were explored. Repeated measures
correlation (RMCorr) was used to avoid bias from the use
of multiple samples from each subject. RMCorr removes
the variance between participants, thus providing the best
linear fit for each participant using parallel regression lines
with varying y-intercepts [19]. The RMCorr coefficient is
bounded by -1 to 1, with 0 indicating no association, and
was implemented in python using rm corr [20].

III. RESULTS

The highest balanced accuracy from each PRO was PF =
57.04% (TGV with step length and SVM), MF = 56.19%
(PSDV with step velocity and SVM), and KSS = 56.31%
(SIV with step time and SVM), and the majority of ac-
curacies were above chance (50%). Tables 1 and 2 give
summaries of the balanced accuracies returned from the
classifiers: means of the gait micros and PROs, respectively.

Table 1 shows that step time, length, and velocity returned
higher accuracies than stride and swing time, and stance
time was the lowest performing characteristic with the lowest
classifier robustness (higher SDs). Combining these measures
together in ‘all’ did not improve or degrade the accuracies.
TGV and PSDV were, overall, the lower performing groups
but SIV had the lowest classifier robustness. Furthermore,
SDV returned the highest accuracy for most gait character-
istics. However, these outcomes should be considered crit-
ically, since the SDs are often considerably high compared
to differences between the means. Overall, the highest mean
accuracy was 54.30% from the SDV group with step velocity.

TABLE I Mean balanced accuracies±SD of each gait characteristic for
each feature group, averaged across the four classifiers and

three PROs. Bold values denote the highest mean accuracy for
each gait characteristic.

Gait micro TGV (%) SIV (%) SDV (%) PSDV (%)

Step Time 52.34±0.4 53.03±1.0 53.61±0.3 52.48±0.6
Step Velocity 52.59±0.1 53.31±0.5 54.30±0.6 53.54±0.2
Step Length 52.04±1.2 52.93±0.8 53.27±0.3 52.03±0.5
Stance Time 48.78±0.8 48.72±1.1 50.14±0.8 51.02±1.1
Stride Time 50.82±0.3 51.35±0.9 52.03±0.6 51.64±0.4
Swing Time 50.96±1.0 52.05±0.6 52.19±0.4 51.72±0.4

All 51.57±0.3 52.72±0.7 53.13±0.5 51.72±0.4

TABLE II Mean balanced accuracies±SD of each PRO for each feature
group, averaged across the four classifiers and six gait

characteristics. Bold values denote the highest mean
accuracy for each PRO.

PRO TGV (%) SIV (%) SDV (%) PSDV (%)

PF 51.73±0.9 51.10±0.5 52.59±0.6 51.62±0.5
MF 51.78±0.4 51.79±0.9 52.10±0.4 52.57±0.5
KSS 50.39±0.9 53.15±0.8 53.31±0.5 51.87±0.9

Table 2 shows that for PF and MF, when SD is taken into
account, the differences between the means of the feature
groups are negligible. The KSS, however, returned higher
accuracies with the SIV and SDV groups than with TGV
and PSDV (minimum difference of 1.28%). This indicates
that the KSS PRO is less robust to classifier inputs.

The strongest RMCorr was 0.262 (LZC of step velocity
with KSS PRO) and therefore, based on r2, explains 6.9% of
variability of KSS. Generally, the KSS returned the strongest
positive and negative correlations, with less variation in the
PF and MF PROs. When considering the correlations of the
individual features (absolute RMCorr averaged across the
PROs), for TGV the SD feature outperformed CoV for each
gait micro and step velocity returned the strongest corre-
lations for both measures. For SIV, the statistical features
were generally outperformed by the Poincaré analysis, aside

TABLE III Summary of RMCorrs for each feature group, including the
percentage of features with p<0.01 with at least one PRO

(‘Sig. Features’), the mean of the positive (+r) and negative
(-r) correlations, and the minimum and maximum of the
correlations (r). Bold denotes the ‘best’ group for each

correlation metric.

Outcome TGV SIV SDV PSDV

Sig. Features 50% 53% 58% 70%
Mean +r 0.038 0.048 0.072 0.060
Max +r 0.122 0.162 0.262 0.177
Mean -r -0.010 -0.037 -0.050 -0.069
Min -r -0.016 -0.174 -0.185 -0.243



from the 80th percentile measure which returned three of the
group’s five best features. For the SDV, the MSE, LZC, and
spectral entropy returned most of the strongest correlations.
For PSDV, the MSE, Katz FD, and correlation FD (CD)
were the best. With padding, all CD measures’ correlations
improved but, for all LZC they decreased. Furthermore, the
frequency analysis was generally outperformed by measures
of complexity. Table 3 reports a summary of the RMCorr
outcomes. The table shows that TGV was outperformed
by the other three feature groups, and SDV and PSDV
returned the strongest correlations. Furthermore, padding the
gait micros improved the number of statistically significant
features (p < 0.01) to 70% associated with at least one PRO.

IV. DISCUSSION

The majority of the correlations and classification accu-
racies in this analysis were low (<0.3 correlation, <60%
accuracy), which indicates to the complexity of this task.
It is possible that in real world scenarios, when people
are tired or fatigued it will not significantly impact how
they walk. Naturally, identifying mental states from physical
manifestations is challenging, but even low associations can
have clinical relevance. However, the main focus of this
particular study was to compare different approaches to
handling the complications of real-world gait variability.

Overall, the SDV feature group seemed to be the best, with
higher and robust classification accuracies and stronger cor-
relations. Padding the SDV improved the percentage of sta-
tistically significant features, but failed to improve the overall
correlations and classifier performances. Generally, TGV was
slightly outperformed in classification performances and it
returned distinctly lower correlations. However, it returned
the highest balanced accuracy in this analysis. Therefore,
SD and CoV may be useful for binary classification, but to
capture more nuance in PRO associations, more advanced
gait variability measures are required.

The main limitation of this analysis is that this is a
feasibility study with a fairly small cohort and very sparse
data. It is also unknown what the impacts of the different
disorders are, for instance HD can impact gait variability
[21], since these individual cohorts are too small for reliable
analysis. Furthermore, using parameters such as frequency
cutoffs based on HRV may have restricted capture of gait
specific information, therefore requiring further investigation.

In conclusion, objectively identifying fatigue in the real
world is a challenging task and exploring advanced measures
of gait variability can provide more insight to fatigue and
daytime sleepiness than SD and CoV alone.
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